# -*- coding: utf-8 -*-
"""Model viewer functions."""
import numpy as np
import pygimli as pg
from pygimli.utils import rndig
from .colorbar import setMappableData
from .utils import updateAxes as updateAxes_
[docs]
def drawModel1D(ax, thickness=None, values=None, model=None, depths=None,
plot='plot',
xlabel=r'Resistivity $(\Omega$m$)$', zlabel='Depth (m)',
z0=0, zmax=None,
**kwargs):
"""Draw 1d block model into axis ax.
Draw 1d block model into axis ax defined by values and thickness vectors
using plot function.
For log y cases, z0 should be set > 0 so that the default becomes 1.
Parameters
----------
ax : mpl axes
Matplotlib Axes object to plot into.
values : iterable [float]
[N] Values for each layer plus lower background.
thickness : iterable [float]
[N-1] thickness for each layer. Either thickness or depths must be set.
depths : iterable [float]
[N-1] Values for layer depths (positive z-coordinates).
Either thickness or depths must be set.
model : iterable [float]
Shortcut to use default model definition.
thks = model[0:nLay]
values = model[nLay:]
plot : string
Matplotlib plotting function.
'plot', 'semilogx', 'semilogy', 'loglog'
xlabel : str
Label for x axis.
ylabel : str
Label for y axis.
z0 : float
Starting depth in m
**kwargs : dict()
Forwarded to the plot routine
Examples
--------
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pygimli as pg
>>> # plt.style.use('ggplot')
>>> thk = [1, 4, 4]
>>> res = np.array([10., 5, 15, 50])
>>> fig, ax = plt.subplots()
>>> pg.viewer.mpl.drawModel1D(ax, values=res*5, depths=np.cumsum(thk),
... plot='semilogx', color='blue')
>>> pg.viewer.mpl.drawModel1D(ax, values=res, thickness=thk, z0=1,
... plot='semilogx', color='red')
>>> pg.wait()
"""
if model is not None:
nLayers = (len(model)-1)//2
thickness = model[:nLayers]
values = model[nLayers:]
if thickness is None and depths is None:
raise Exception("Either thickness or depths must be given.")
nLayers = len(values)
px = np.zeros(nLayers * 2)
pz = np.zeros(nLayers * 2)
if thickness is not None:
z1 = np.cumsum(thickness) + z0
else:
z1 = depths
for i in range(nLayers):
px[2 * i] = values[i]
px[2 * i + 1] = values[i]
if i == nLayers - 1:
pz[2 * i + 1] = zmax or z1[i - 1] * 1.2
else:
pz[2 * i + 1] = z1[i]
pz[2 * i + 2] = z1[i]
if plot == 'loglog' or plot == 'semilogy':
if z0 == 0:
pz[0] = z1[0] / 2.
else:
pz[0] = z0
try:
plot = getattr(ax, plot)
plot(px, pz+z0, **kwargs)
except BaseException as e:
print(e)
ax.set_ylabel(zlabel)
ax.set_xlabel(xlabel)
# assume positive depths pointing upward
ax.set_ylim(pz[-1], pz[0])
ax.grid(True)
[docs]
def draw1DColumn(ax, x, val, thk, width=30, ztopo=0, cMin=1, cMax=1000,
cMap=None, name=None, textoffset=0.0, **kwargs):
"""Draw a 1D column (e.g., from a 1D inversion) on a given ax.
Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from pygimli.viewer.mpl import draw1DColumn
>>> thk = [1, 2, 3, 4]
>>> val = thk
>>> fig, ax = plt.subplots()
>>> draw1DColumn(ax, 0.5, val, thk, width=0.1, cmin=1, cmax=4, name="VES")
<matplotlib.collections.PatchCollection object at ...>
>>> _ = ax.set_ylim(-np.sum(thk), 0)
"""
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
from matplotlib.colors import LogNorm
z = -np.hstack([0., np.cumsum(thk), np.sum(thk) * 1.5]) + ztopo
recs = []
for i in range(len(val)):
recs.append(Rectangle((x - width / 2., z[i]), width, z[i + 1] - z[i]))
pp = PatchCollection(recs)
col = ax.add_collection(pp)
pp.set_edgecolor(None)
pp.set_linewidth(0.0)
if cMap is not None:
if isinstance(cMap, str):
pp.set_cmap(pg.viewer.mpl.cmapFromName(cMap))
else:
pp.set_cmap(cMap)
if kwargs.pop("logScale", True):
pp.set_norm(LogNorm(cMin, cMax))
pp.set_array(np.array(val))
pp.set_clim(cMin, cMax)
if name:
ax.text(x+textoffset, ztopo, name, ha='center', va='bottom')
updateAxes_(ax)
return col
def showmymatrix(mat, x, y, dx=2, dy=1, xlab=None, ylab=None, cbar=None):
"""What is this good for?."""
pg.critical('who use this?')
plt = pg.plt
plt.imshow(mat, interpolation='nearest')
plt.xticks(np.arange(0, len(x), dx), ["%g" % rndig(xi, 2) for xi in x])
plt.yticks(np.arange(0, len(y), dy), ["%g" % rndig(yi, 2) for yi in y])
plt.ylim((len(y) - 0.5, -0.5))
if xlab is not None:
plt.xlabel(xlab)
if ylab is not None:
plt.ylabel(ylab)
plt.axis('auto')
if cbar is not None:
plt.colorbar(orientation=cbar)
return
def draw1dmodelErr(x, xL, xU=None, thk=None, xcol='g', ycol='r', **kwargs):
"""TODO."""
pg.critical("in use?")
if thk is None:
nlay = (len(x) + 1) / 2
thk = np.array(x)[:nlay - 1]
x = np.asarray(x)[nlay - 1:nlay * 2 - 1]
thkL = np.array(xL)[:nlay - 1]
thkU = np.array(xU)[:nlay - 1]
xL = np.asarray(xL)[nlay - 1:nlay * 2 - 1]
xU = np.asarray(xU)[nlay - 1:nlay * 2 - 1]
# thk0 = np.hstack((thk, 0.))
# thkL0 = np.hstack((thkL, 0.))
# thkU0 = np.hstack((thkU, 0.))
zm = np.hstack((np.cumsum(thk) - thk / 2, np.sum(thk) * 1.2)) # midpoint
zc = np.cumsum(thk) # cumulative
draw1dmodel(x, thk, **kwargs)
plt = pg.plt
plt.xlim(min(xL) * 0.95, max(xU) * 1.05)
plt.ylim(zm[-1] * 1.1, 0.)
plt.errorbar(
x, zm, fmt='.', xerr=np.vstack(
(x - xL, xU - x)), ecolor=xcol, **kwargs)
plt.errorbar((x[:-1] + x[1:]) / 2, zc, fmt='.',
yerr=np.vstack((thk - thkL, thkU - thk)), ecolor=ycol)
[docs]
def showStitchedModels(models, ax=None, x=None, cMin=None, cMax=None, thk=None,
logScale=True, title=None, zMin=0, zMax=0, zLog=False,
**kwargs):
"""Show several 1d block models as (stitched) section.
Parameters
----------
model : iterable of iterable (np.ndarray or list of np.array)
1D models (consisting of thicknesses and values) to plot
ax : matplotlib axes [None - create new]
axes object to plot in
x : iterable
positions of individual models
cMin/cMax : float [None - autodetection from range]
minimum and maximum colorscale range
logScale : bool [True]
use logarithmic color scaling
zMin/zMax : float [0 - automatic]
range for z (y axis) limits
zLog : bool
use logarithmic z (y axis) instead of linear
topo : iterable
vector of elevation for shifting
thk : iterable
vector of layer thicknesses for all models
Returns
-------
ax : matplotlib axes [None - create new]
axes object to plot in
"""
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
from matplotlib.colors import LogNorm
if x is None:
x = np.arange(len(models))
topo = kwargs.pop('topo', np.zeros_like(x))
fig = None
if ax is None:
fig, ax = pg.plt.subplots()
dxmed2 = np.median(np.diff(x)) / 2.
patches = []
zMinLimit = 9e99
zMaxLimit = 0
if thk is not None:
nlay = len(models[0])
else:
nlay = int(np.floor((len(models[0]) + 1) / 2.))
vals = np.zeros((len(models), nlay))
for i, imod in enumerate(models):
if thk is not None: # take only resistivity from model
vals[i, :] = imod
thki = thk
else: # extract thickness from model vector
if isinstance(imod, pg.Vector):
vals[i, :] = imod[nlay - 1:2 * nlay - 1]
thki = np.asarray(imod[:nlay - 1])
else:
vals[i, :] = imod[nlay - 1:2 * nlay - 1]
thki = imod[:nlay - 1]
if zMax > 0:
z = np.hstack((0., np.cumsum(thki), zMax))
else:
thki = np.hstack((thki, thki[-1]*3))
z = np.hstack((0., np.cumsum(thki)))
z = topo[i] - z
zMinLimit = min(zMinLimit, z[-1])
zMaxLimit = max(zMaxLimit, z[0])
for j in range(nlay):
rect = Rectangle((x[i] - dxmed2, z[j]),
dxmed2 * 2, z[j+1]-z[j])
patches.append(rect)
p = PatchCollection(patches) # , cmap=cmap, linewidths=0)
if cMin is not None:
p.set_clim(cMin, cMax)
setMappableData(p, vals.ravel(), logScale=logScale)
ax.add_collection(p)
if logScale:
norm = LogNorm(cMin, cMax)
p.set_norm(norm)
if 'cMap' in kwargs:
p.set_cmap(kwargs['cMap'])
# ax.set_ylim((zMaxLimit, zMin))
ax.set_ylim((zMinLimit, zMaxLimit))
if zLog:
ax.set_yscale("log", nonposy='clip')
ax.set_xlim((min(x) - dxmed2, max(x) + dxmed2))
if title is not None:
ax.set_title(title)
if kwargs.pop('colorBar', True):
cb = pg.viewer.mpl.createColorBar(p, cMin=cMin, cMax=cMax, nLevs=5)
# cb = plt.colorbar(p, orientation='horizontal',aspect=50,pad=0.1)
if 'cticks' in kwargs:
xt = np.unique(np.clip(kwargs['cticks'], cMin, cMax))
cb.set_ticks(xt)
cb.set_ticklabels([str(xti) for xti in xt])
if 'label' in kwargs:
cb.set_label(kwargs['label'])
pg.plt.draw()
return ax # maybe return cb as well?
[docs]
def draw1dmodel(x, thk=None, xlab=None, zlab="z in m", islog=True, z0=0):
"""DEPRECATED."""
pg.critical("STYLE_WARNING!!!!!!! don't use this call. "
"WHO use this anymore?? Use show1dmodel or drawModel1D instead.")
show1dmodel(x, thk, xlab, zlab, islog, z0)
[docs]
def show1dmodel(x, thk=None, xlab=None, zlab="z in m", islog=True, z0=0,
**kwargs):
"""Show 1d block model defined by value and thickness vectors.
"""
pg.error("rename after naming convention, don't use plt")
pg.critical("STYLE_WARNING!!!!!!! don't use this call. "
"WHO use this anymore??.")
if xlab is None:
xlab = "$\\rho$ in $\\Omega$m"
if thk is None: # gimli blockmodel (thk+x together) given
nl = int(np.floor((len(x) - 1) / 2.)) + 1
thk = np.asarray(x)[:nl - 1]
x = np.asarray(x)[nl - 1:nl * 2 - 1]
z1 = np.concatenate(([0], np.cumsum(thk))) + z0
z = np.concatenate((z1, [z1[-1] * 1.2]))
nl = len(x) # x.size()
px = np.zeros((nl * 2, 1))
pz = np.zeros((nl * 2, 1))
for i in range(nl):
px[2 * i] = x[i]
px[2 * i + 1] = x[i]
pz[2 * i + 1] = z[i + 1]
if i < nl - 1:
pz[2 * i + 2] = z[i + 1]
plt = pg.plt
# plt.cla()
if islog:
plt.semilogx(px, pz, **kwargs)
else:
plt.plot(px, pz, **kwargs)
plt.ion()
plt.grid(which='both')
plt.xlim((np.min(x) * 0.9, np.max(x) * 1.1))
plt.ylim((max(z1) * 1.15, 0.))
plt.xlabel(xlab)
plt.ylabel(zlab)
plt.show()
return
[docs]
def showfdemsounding(freq, inphase, quadrat, response=None, npl=2):
"""Show FDEM sounding as real(inphase) and imaginary (quadrature) fields.
Show FDEM sounding as real(inphase) and imaginary (quadrature) fields
normalized by the (purely real) free air solution.
"""
pg.error("rename after naming convention, don't use plt")
pg.critical("STYLE_WARNING!!!!!!! don't use this call. "
"WHO use this anymore??.")
nf = len(freq)
plt = pg.plt
fig = plt.figure(1)
fig.clf()
ax1 = fig.add_subplot(1, npl, npl - 1)
plt.semilogy(inphase, freq, 'x-')
if response is not None:
plt.semilogy(np.asarray(response)[:nf], freq, 'x-')
plt.grid(which='both')
ax2 = fig.add_subplot(1, npl, npl)
plt.semilogy(quadrat, freq, 'x-')
if response is not None:
plt.semilogy(np.asarray(response)[nf:], freq, 'x-')
plt.grid(which='both')
fig.show()
ax = [ax1, ax2]
if npl > 2:
ax3 = fig.add_subplot(1, npl, 1)
ax.append(ax3)
return ax