#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Some data related viewer."""
import numpy as np
import pygimli as pg
from .utils import updateAxes as updateAxes_
[docs]
def generateMatrix(xvec, yvec, vals, **kwargs):
"""Generate a data matrix from x/y and value vectors.
Parameters
----------
xvec, yvec, vals : iterables (list, np.array, pg.Vector) of same length
full: bool [False]
generate a fully symmetric matrix containing all unique xvec+yvec
otherwise A is squeezed to the individual unique vectors
Returns
-------
A : np.ndarray(2d)
matrix containing the values sorted according to unique xvec/yvec
xmap/ymap : dict {key: num}
dictionaries for accessing matrix position (row/col number from x/y[i])
"""
verbose = kwargs.get("verbose", True)
if kwargs.pop('full', False):
xymap = {xy: ii
for ii, xy in enumerate(np.unique(np.hstack((xvec, yvec))))}
xmap = xymap
ymap = xymap
else:
xu, yu = np.unique(xvec), np.unique(yvec)
if kwargs.pop('fillx', False):
if verbose:
pg.info('filling x', len(xu))
dx = np.median(np.diff(xu)).round(1)
xu = np.arange(0, xu[-1] - xu[0] + dx * 0.5, dx) + xu[0]
if verbose:
pg.info(len(xu))
if kwargs.pop('filly', False):
dy = np.median(np.diff(yu)).round(1)
yu = np.arange(0, yu[-1] - yu[0] + dy * 0.5, dy) + yu[0]
xmap = {xx: ii for ii, xx in enumerate(xu)}
ymap = {yy: ii for ii, yy in enumerate(yu)}
A = np.zeros((len(ymap), len(xmap)))
inot = []
nshow = min([len(xvec), len(yvec), len(vals)])
for i in range(nshow):
xi, yi = xvec[i], yvec[i]
if A[ymap[yi], xmap[xi]]:
inot.append(i)
A[ymap[yi], xmap[xi]] = vals[i]
if len(inot) > 0:
if verbose:
pg.info(len(inot), "data of", nshow, "not shown")
if len(inot) < 30:
if verbose:
pg.info(inot)
return A, xmap, ymap
[docs]
def showValMapPatches(vals, xVec=None, yVec=None, dx=1, dy=None, **kwargs):
"""Show values as patches over x and y vector.
Parameters
----------
vals : iterable
values to plot
xVec/yVec : iterable
x/y axis values
dx/dy : float
patch width
circular : bool
assume circular (cyclic) positions
"""
ax, _ = pg.show(ax=kwargs.pop('ax', None))
gci, ymap = drawValMapPatches(ax, vals, xVec=xVec, yVec=yVec, dx=dx, dy=dy,
**kwargs)
cbar = pg.viewer.mpl.createColorBar(
gci, **kwargs, onlyColorSet=not kwargs.pop('colorBar', True))
return ax, cbar, ymap
[docs]
def drawValMapPatches(ax, vals, xVec=None, yVec=None, dx=1, dy=None, **kwargs):
"""Show values as patches over x and y vector.
Parameters
----------
vals : iterable
values to plot
xVec/yVec : iterable
x/y axis values
dx/dy : float
patch width
circular : bool
assume circular (cyclic) positions
"""
from matplotlib.collections import PatchCollection
from matplotlib.patches import Wedge, Rectangle
recs = []
circular = kwargs.pop('circular', False)
if circular:
recs = [None] * len(xVec)
if dy is None: # map y values to unique
ymap = {xy: ii for ii, xy in enumerate(np.unique(yVec))}
xyMap = {}
for i, y in enumerate(yVec):
if y not in xyMap:
xyMap[y] = []
xyMap[y].append(i)
# maxR = max(ymap.values()) # what's that for? not used
dR = 1 / (len(ymap.values())+1)
# dOff = np.pi / 2 # what's that for? not used
for y, xIds in xyMap.items():
r = 1. - dR*(ymap[y]+1)
# ax.plot(r * np.cos(xvec[xIds]),
# r * np.sin(xvec[xIds]), 'o')
# print(y, ymap[y])
for i in xIds:
phi = xVec[i]
# x = r * np.cos(phi) # what's that for? not used
y = r * np.sin(phi)
dPhi = (xVec[1] - xVec[0])
recs[i] = Wedge((0., 0.), r + dR/1.5,
(phi - dPhi)*360/(2*np.pi),
(phi + dPhi)*360/(2*np.pi),
width=dR,
zorder=1+r)
# if i < 5:
# ax.text(x, y, str(i))
# pg.wait()
else:
raise BaseException("Not implemented")
else:
if dy is None: # map y values to unique
ymap = {xy: ii for ii, xy in enumerate(np.unique(yVec))}
for i in range(len(vals)):
recs.append(Rectangle((xVec[i] - dx / 2, ymap[yVec[i]] - 0.5),
dx, 1))
else:
for i in range(len(vals)):
recs.append(Rectangle((xVec[i] - dx / 2, yVec[i] - dy / 2),
dx, dy))
ax.set_xlim(min(xVec) - dx / 2, max(xVec) + dx / 2)
ax.set_ylim(len(ymap) - 0.5, -0.5)
pp = PatchCollection(recs)
pp.set_edgecolor(None)
pp.set_linewidth(0.0)
pp.set_array(vals)
gci = ax.add_collection(pp)
if circular:
pp.set_edgecolor('black')
pp.set_linewidth(0.1)
return gci, ymap
[docs]
def patchValMap(vals, xvec=None, yvec=None, ax=None, cMin=None, cMax=None,
logScale=None, label=None, dx=1, dy=None, cTrim=0, **kwargs):
"""Plot previously generated (generateVecMatrix) y map (category).
Parameters
----------
vals : iterable
Data values to show.
xvec : dict {i:num}
dict (must match vals.shape[0])
ymap : iterable
vector for x axis (must match vals.shape[0])
ax : mpl.axis
axis to plot, if not given a new figure is created
cMin/cMax : float
minimum/maximum color values
cTrim : float [0]
use trim value to exclude outer cTrim percent of data from color scale
logScale : bool
logarithmic colour scale [min(vals)>0]
label : string
colorbar label
** kwargs:
* circular : bool
Plot in polar coordinates.
"""
from matplotlib.collections import PatchCollection
from matplotlib.patches import Wedge, Rectangle
from matplotlib.colors import LogNorm, Normalize
if cMin is None:
cMin = np.min(vals)
# cMin = np.nanquantile(vals, cTrim/100)
if cMax is None:
cMax = np.max(vals)
# cMin = np.nanquantile(vals, 1-cTrim/100)
if logScale is None:
logScale = (cMin > 0.0)
norm = None
if logScale and cMin > 0:
norm = LogNorm(vmin=cMin, vmax=cMax)
else:
norm = Normalize(vmin=cMin, vmax=cMax)
if ax is None:
ax = pg.plt.subplots()[1]
recs = []
circular = kwargs.pop('circular', False)
if circular:
recs = [None] * len(xvec)
if dy is None: # map y values to unique
ymap = {xy: ii for ii, xy in enumerate(np.unique(yvec))}
xyMap = {}
for i, y in enumerate(yvec):
if y not in xyMap:
xyMap[y] = []
xyMap[y].append(i)
# maxR = max(ymap.values()) # what's that for? not used
dR = 1 / (len(ymap.values())+1)
# dOff = np.pi / 2 # what's that for? not used
for y, xIds in xyMap.items():
r = 1. - dR*(ymap[y]+1)
# ax.plot(r * np.cos(xvec[xIds]),
# r * np.sin(xvec[xIds]), 'o')
# print(y, ymap[y])
for i in xIds:
phi = xvec[i]
# x = r * np.cos(phi) # what's that for? not used
y = r * np.sin(phi)
dPhi = (xvec[1] - xvec[0])
recs[i] = Wedge((0., 0.), r + dR/1.5,
(phi - dPhi)*360/(2*np.pi),
(phi + dPhi)*360/(2*np.pi),
width=dR,
zorder=1+r)
else:
raise BaseException("Implementme")
else:
if dy is None: # map y values to unique
ymap = {xy: ii for ii, xy in enumerate(np.unique(yvec))}
for i in range(len(vals)):
recs.append(Rectangle((xvec[i] - dx / 2, ymap[yvec[i]] - 0.5),
dx, 1))
else:
for i in range(len(vals)):
recs.append(Rectangle((xvec[i] - dx / 2, yvec[i] - dy / 2),
dx, dy))
ax.set_xlim(min(xvec) - dx / 2, max(xvec) + dx / 2)
ax.set_ylim(len(ymap) - 0.5, -0.5)
pp = PatchCollection(recs)
# ax.clear()
col = ax.add_collection(pp)
pp.set_edgecolor(None)
pp.set_linewidth(0.0)
if 'alpha' in kwargs:
pp.set_alpha(kwargs['alpha'])
if circular:
pp.set_edgecolor('black')
pp.set_linewidth(0.1)
cmap = pg.viewer.mpl.cmapFromName(**kwargs)
if kwargs.pop('markOutside', False):
cmap.set_bad('grey')
cmap.set_under('darkgrey')
cmap.set_over('lightgrey')
cmap.set_bad('black')
pp.set_cmap(cmap)
pp.set_norm(norm)
pp.set_array(vals)
pp.set_clim(cMin, cMax)
updateAxes_(ax)
cbar = kwargs.pop('colorBar', True)
ori = kwargs.pop('orientation', 'horizontal')
if cbar in ['horizontal', 'vertical']:
ori = cbar
cbar = True
if cbar is True: # not for cbar=1, which is really confusing!
cbar = pg.viewer.mpl.createColorBar(col, cMin=cMin, cMax=cMax,
nLevs=5, label=label,
orientation=ori)
elif cbar is not False:
# .. cbar is an already existing cbar .. so we update its values
pg.viewer.mpl.updateColorBar(cbar, cMin=cMin, cMax=cMax,
nLevs=5, label=label)
updateAxes_(ax)
return ax, cbar, ymap
[docs]
def patchMatrix(mat, xmap=None, ymap=None, ax=None, cMin=None, cMax=None,
logScale=None, label=None, dx=1, **kwargs):
"""Plot previously generated (generateVecMatrix) matrix.
Parameters
----------
mat : numpy.array2d
matrix to show
xmap : dict {i:num}
dict (must match A.shape[0])
ymap : iterable
vector for x axis (must match A.shape[0])
ax : mpl.axis
axis to plot, if not given a new figure is created
cMin/cMax : float
minimum/maximum color values
logScale : bool
logarithmic colour scale [min(A)>0]
label : string
colorbar label
dx : float
width of the matrix elements (by default 1)
"""
from matplotlib.collections import PatchCollection
from matplotlib.patches import Wedge, Rectangle
from matplotlib.colors import LogNorm, Normalize
mat = np.ma.masked_where(mat == 0.0, mat, False)
if cMin is None:
cMin = np.min(mat)
if cMax is None:
cMax = np.max(mat)
if logScale is None:
logScale = (cMin > 0.0)
if logScale:
norm = LogNorm(vmin=cMin, vmax=cMax)
else:
norm = Normalize(vmin=cMin, vmax=cMax)
if ax is None:
ax = pg.plt.subplots()[1]
iy, ix = np.nonzero(mat) # != 0)
recs = []
vals = []
for i, _ in enumerate(ix):
recs.append(Rectangle((ix[i] - dx / 2, iy[i] - 0.5), dx, 1))
vals.append(mat[iy[i], ix[i]])
pp = PatchCollection(recs)
col = ax.add_collection(pp)
pp.set_edgecolor(None)
pp.set_linewidth(0.0)
if 'cmap' in kwargs:
pp.set_cmap(kwargs.pop('cmap'))
if 'cMap' in kwargs:
pp.set_cmap(kwargs.pop('cMap'))
pp.set_norm(norm)
pp.set_array(np.array(vals))
pp.set_clim(cMin, cMax)
xval = [k for k in xmap.keys()]
ax.set_xlim(min(xval) - dx / 2, max(xval) + dx / 2)
ax.set_ylim(len(ymap) + 0.5, -0.5)
updateAxes_(ax)
cb = None
if kwargs.pop('colorBar', True):
ori = kwargs.pop('orientation', 'horizontal')
cb = pg.viewer.mpl.createColorBar(col, cMin=cMin, cMax=cMax, nLevs=5,
label=label, orientation=ori)
return ax, cb
[docs]
def plotMatrix(mat, *args, **kwargs):
"""Naming conventions. Use drawDataMatrix or showDataMatrix instead."""
pg.deprecated("use drawDataMatrix or showMatrix")
return showDataMatrix(*args, **kwargs)
[docs]
def showDataMatrix(mat, xmap=None, ymap=None, **kwargs):
"""Show value map as matrix.
Returns
-------
ax : matplotlib axes object
axes object
cb : matplotlib colorbar
colorbar object
"""
ax, _ = pg.show(ax=kwargs.pop('ax', None))
gci = drawDataMatrix(ax, mat, xmap=xmap, ymap=ymap, **kwargs)
cb = None
if kwargs.pop('colorBar', True):
ori = kwargs.pop('orientation', 'horizontal')
cMin = kwargs.pop('cMin', None)
cMax = kwargs.pop('cMax', None)
label = kwargs.pop('label', None)
cb = pg.viewer.mpl.createColorBar(gci, cMin=cMin, cMax=cMax, nLevs=5,
label=label, orientation=ori)
return ax, cb
[docs]
def drawDataMatrix(ax, mat, xmap=None, ymap=None, cMin=None, cMax=None,
logScale=None, label=None, **kwargs):
"""Draw previously generated (generateVecMatrix) matrix.
Parameters
----------
ax : mpl.axis
axis to plot, if not given a new figure is created
mat : numpy.array2d
matrix to show
xmap : dict {i:num}
dict (must match A.shape[0])
ymap : iterable
vector for x axis (must match A.shape[0])
cMin/cMax : float
minimum/maximum color values
logScale : bool
logarithmic colour scale [min(A)>0]
label : string
colorbar label
"""
from matplotlib.colors import LogNorm, Normalize
if xmap is None:
xmap = {i: i for i in range(mat.shape[0])}
if ymap is None:
ymap = {i: i for i in range(mat.shape[1])}
if isinstance(mat, np.ma.MaskedArray):
mat_ = mat
else:
mat_ = np.ma.masked_where(mat == 0.0, mat, False)
if cMin is None:
cMin = np.min(mat_)
if cMax is None:
cMax = np.max(mat_)
if logScale is None:
logScale = (cMin > 0.0)
if logScale:
norm = LogNorm(vmin=cMin, vmax=cMax)
else:
norm = Normalize(vmin=cMin, vmax=cMax)
gci = ax.imshow(mat_, norm=norm, interpolation='nearest')
if 'cmap' in kwargs:
pg.deprecated('use cMap') # 190422
gci.set_cmap(kwargs.pop('cmap'))
if 'cMap' in kwargs:
gci.set_cmap(kwargs.pop('cMap'))
ax.set_aspect(kwargs.pop('aspect', 1))
ax.grid(True)
xt = np.unique(ax.get_xticks().clip(0, len(xmap) - 1))
yt = np.unique(ax.get_xticks().clip(0, len(ymap) - 1))
if kwargs.pop('showally', False):
yt = np.arange(len(ymap))
else:
yt = np.round(np.linspace(0, len(ymap) - 1, 5))
xx = np.sort([k for k in xmap])
ax.set_xticks(xt)
ax.set_xticklabels(['{:g}'.format(round(xx[int(ti)], 2)) for ti in xt])
yy = np.unique([k for k in ymap])
ax.set_yticks(yt)
ax.set_yticklabels(['{:g}'.format(round(yy[int(ti)], 2)) for ti in yt])
return gci
[docs]
def plotVecMatrix(xvec, yvec, vals, full=False, **kwargs):
"""Plot vectors as matrix (deprecated)."""
pg.deprecated("use showVecMatrix")
return showVecMatrix(xvec, yvec, vals, full, **kwargs)
[docs]
def showVecMatrix(xvec, yvec, vals, full=False, **kwargs):
"""Plot three vectors as matrix.
Parameters
----------
xvec, yvec : iterable (e.g. list, np.array, pg.Vector) of identical length
vectors defining the indices into the matrix
vals : iterable of same length as xvec/yvec
vector containing the values to show
full: bool [False]
use a fully symmetric matrix containing all unique xvec+yvec
otherwise A is squeezed to the individual unique xvec/yvec values
**kwargs: forwarded to plotMatrix
* ax : mpl.axis
Axis to plot, if not given a new figure is created
* cMin/cMax : float
Minimum/maximum color values
* logScale : bool
Lgarithmic colour scale [min(A)>0]
* label : string
Colorbar label
Returns
-------
ax : matplotlib axes object
axes object
cb : matplotlib colorbar
colorbar object
"""
A, xmap, ymap = generateMatrix(xvec, yvec, vals, full=full,
verbose=kwargs.get("verbose", True))
return showDataMatrix(A, xmap=xmap, ymap=ymap, **kwargs)
[docs]
def drawVecMatrix(ax, xvec, yvec, vals, full=False, **kwargs):
"""Draw x, y, v vectors in form of a matrix."""
A, xmap, ymap = generateMatrix(xvec, yvec, vals, full=full)
return drawDataMatrix(ax, A, xmap=xmap, ymap=ymap, **kwargs)
[docs]
def plotDataContainerAsMatrix(*args, **kwargs):
"""Plot datacontainer as matrix (deprecated)."""
pg.deprecated('plotDataContainerAsMatrix', 'showDataContainerAsMatrix')
return showDataContainerAsMatrix(*args, **kwargs)
[docs]
def showDataContainerAsMatrix(data, x=None, y=None, v=None, **kwargs):
"""Plot data container as matrix (cross-plot).
for each x, y and v token strings or vectors should be given
"""
xToken = ''
yToken = ''
mul = kwargs.pop('mul', 10**int(np.ceil(np.log10(data.sensorCount()))))
plus = kwargs.pop('plus', 1) # add 1 to count
verbose = kwargs.get('verbose', True)
if isinstance(x, str):
xToken = x
x = data(x)
elif hasattr(x, '__iter__') and isinstance(x[0], str):
num = np.zeros(data.size())
for token in x:
num *= mul
num += data(token) + plus
xToken += token + ' '
x = num.copy()
if verbose:
pg.info("found " + str(len(np.unique(x))) + " x values")
if isinstance(y, str):
yToken = y
y = data(y)
elif hasattr(y, '__iter__') and isinstance(y[0], str):
num = np.zeros(data.size())
for token in y:
num *= mul
num += data(token) + plus
yToken += token + ' '
y = num.copy()
if isinstance(v, str):
v = data(v)
# kwargs.setdefault('ymap', {n: i for i, n in enumerate(np.unique(y))})
if verbose:
pg.info("found " + str(len(np.unique(y))) + " y values")
pg.info("x vector length: {:d}".format(len(x)))
pg.info("y vector length: {:d}".format(len(y)))
pg.info("v vector length: {:d}".format(len(v)))
if x is None or y is None or v is None:
raise Exception("Vectors or strings must be given")
if len(x) != len(y) or len(x) != len(v):
raise Exception("lengths x/y/v not matching: {:d}!={:d}!={:d}".format(
len(x), len(y), len(v)))
ax, cbar = showVecMatrix(x, y, v, **kwargs)
try:
ax.set_xlabel(xToken)
ax.set_ylabel(yToken)
except Exception:
print("Could not set x/y label: ", xToken, yToken)
return ax, cbar
[docs]
def drawSensorAsMarker(ax, data):
"""Draw Sensor marker, these marker are pickable."""
elecsX = []
elecsY = []
for i in range(len(data.sensorPositions())):
elecsX.append(data.sensorPositions()[i][0])
elecsY.append(data.sensorPositions()[i][1])
electrodeMarker, = ax.plot(elecsX, elecsY, 'x', color='black', picker=5.)
ax.set_xlim([data.sensorPositions()[0][0] - 1.,
data.sensorPositions()[data.sensorCount() - 1][0] + 1.])
return electrodeMarker