Source code for pygimli.utils.dem

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Digital Elevation Model (DEM) class for interpolating elevations."""
import os.path
import math
import numpy as np


[docs] class DEM: """Interpolation class for digital elevation models."""
[docs] def __init__(self, demfile, x=None, y=None, **kwargs): """Initialize DGM (regular grid) interpolation object. Parameters ---------- demfile : str or iterable elevations (list, ndarray) digital elevation file: * ASC file with lower left corner and spacing in header OR * x, y, z list of grid points or irregular points x, y : iterable of (unique) x and y positions matching z Keyword Arguments ----------------- toLatLon: callable(x, y) [None] Custom coordinate translator. If set to None then `lambda x_, y_: utm.to_latlon(x_, y_, zone, 'N')` is taken. zone: int [32] UTM zone to be chosen """ from scipy.interpolate import RegularGridInterpolator, LinearNDInterpolator self.latlon = False self.x = x self.y = y self.fallback = kwargs.pop('fallback', kwargs.pop('z0', None)) if isinstance(self.fallback, str): self.fallback = DEM(self.fallback) if isinstance(demfile, (list, tuple)): self.__init__(demfile[0], **kwargs) for addfile in demfile[1:]: self.add(addfile) self.dem = RegularGridInterpolator((self.x, self.y), np.fliplr(self.z.T)) elif isinstance(demfile, str): if demfile[-4:].lower() == '.asc': self.loadASC(demfile) elif demfile[-4:].lower() == '.hgt': self.loadHGT(demfile) else: self.loadTXT(demfile) elif x is not None and y is not None: self.z = demfile else: raise Exception("Either DEM file or z with x and y must be given!") if self.latlon: self._toLatLon = kwargs.pop('toLatLon', None) if self._toLatLon is None: import utm zone = kwargs.pop('zone', 32) self._toLatLon = lambda x_, y_: utm.to_latlon(x_, y_, zone, 'N')
def __call__(self, x, y=None): """Interpolation function.""" if self.latlon: y, x = self._toLatLon(x, y) if y is None: return self.dem(x) else: if hasattr(self, 'tri'): out = self.dem(x, y) else: out = self.dem((x, y)) if isinstance(out, np.ma.MaskedArray): out = out.data if self.fallback is not None: if isinstance(self.fallback, (float, int)): out[np.isnan(out)] = self.fallback elif isinstance(self.fallback, DEM): out[np.isnan(out)] = self.fallback(x, y) return out
[docs] def loadTXT(self, demfile): """Load column-based DEM.""" import matplotlib.tri as mtri from scipy.interpolate import RegularGridInterpolator, LinearNDInterpolator xp, yp, zp = np.loadtxt(demfile, unpack=True) be = self.fallback is None if len(np.unique(xp)) * len(np.unique(yp)) > len(xp): self.x = xp self.y = yp self.z = zp self.tri = mtri.Triangulation(self.x, self.y) self.dem = mtri.CubicTriInterpolator(self.tri, self.z) # self.dem = LinearNDInterpolator(np.column_stack((xp, yp)), zp) return if np.isclose(yp[0], yp[1], rtol=1e-32, atol=1e-2): if np.isclose(xp[0], xp[1], rtol=1e-32, atol=1e-2): print('Fatal error! Neither first two x- nor y- coords are ' 'increasing in the specified xyz file! Aborting...') raise SystemExit elif xp[1] > xp[0]: nx = np.argwhere(np.diff(xp) < 0)[0][0] + 1 ny = len(xp) // nx x = xp[:nx] y = yp[::nx] zp = zp.reshape((ny, nx)) else: if yp[1] > yp[0]: ny = np.argwhere(np.diff(yp) < 0)[0][0] + 1 else: ny = np.argwhere(np.diff(yp) > 0)[0][0] + 1 nx = len(xp) // ny x = xp[::ny] y = yp[:ny] zp = zp.reshape((nx, ny)).T if y[1] < y[0]: y.sort() zp = np.flipud(zp) if x[1] < x[0]: x.sort() zp = np.fliplr(zp) self.z = zp self.x = x self.y = y self.dem = RegularGridInterpolator((self.x, self.y), self.z.T, bounds_error=be)
[docs] def loadASC(self, ascfile): """Load ASC (DEM matrix with location header) file.""" from scipy.interpolate import RegularGridInterpolator, LinearNDInterpolator with open(ascfile) as fid: header = {} sp = [] nheader = 0 while len(sp) < 3: sp = fid.readline().split() if len(sp) < 3: header[sp[0]] = float(sp[1].replace(',', '.')) nheader += 1 self.z = np.flipud(np.genfromtxt(ascfile, skip_header=nheader)) if 'NODATA_value' in header: self.z[self.z == header['NODATA_value']] = np.nan dx = header.pop('cellsize', 1.0) # just a guess self.x = np.arange(header['ncols']) * dx + header['xllcorner'] self.y = np.arange(header['nrows']) * dx + header['yllcorner'] be = self.fallback is None self.dem = RegularGridInterpolator((self.x, self.y), self.z.T, bounds_error=be)
[docs] def loadHGT(self, hgtfile): """Load ASC (DEM matrix with location header) file.""" siz = os.path.getsize(hgtfile) samples = int(math.sqrt(siz/2)) lat = int(hgtfile[-10:-8]) lon = int(hgtfile[-7:-4]) self.x = np.linspace(lon,lon+1,samples, endpoint=False) self.y = np.linspace(lat,lat+1,samples, endpoint=False) be = self.fallback is None with open(hgtfile, 'rb') as hgt_data: self.z = np.fromfile(hgt_data, np.dtype('>i2'), samples*samples).reshape((samples, samples)) self.z[self.z < -32000] = 0 self.dem = RegularGridInterpolator((self.x, self.y), np.fliplr(self.z.T), bounds_error=be) self.latlon = True
[docs] def add(self, new): """Combine two DEM by concatenatation. x or y vectors must be equal (e.g. for 1° SRTM models). Parameters ---------- new : DEM | str DEM instance or string to load """ if isinstance(new, (str, list, tuple)): new = DEM(new) assert isinstance(new, DEM), "No DEM instance!" if np.allclose(self.y, new.y): if self.x[0] < new.x[0]: self.x = np.concatenate([self.x, new.x]) self.z = np.hstack([self.z, new.z]) else: self.x = np.concatenate([new.x, self.x]) self.z = np.hstack([new.z, self.z]) elif np.allclose(self.x, new.x): if self.y[0] < new.y[0]: self.y = np.concatenate([self.y, new.y]) self.z = np.vstack([new.z, self.z]) else: self.y = np.concatenate([new.y, self.y]) self.z = np.hstack([self.z, new.z])
[docs] def show(self, cmap="terrain", cbar=True, ax=None, **kwargs): """Show digital elevation model (i.e. the elevation map). Keyword arguments ----------------- - cmap = "terrain", type str () matplotlib colormap definiton - cbar = True, type bool add colorbar to the plot or not - ax = None, type matplotlib figure axes object add the plot to a given axes object or create a new one - **kwargs, type keyword arguments add additional keyword arguments for the plot style (e.g., *lw*) """ import matplotlib.tri as mtri from scipy.interpolate import RegularGridInterpolator, LinearNDInterpolator if ax is None: fig, ax = pg.plt.subplots(figsize=kwargs.pop('figsize', (15, 15))) # extract some kwargs for axis setting and colorbar orientation = kwargs.pop('orientation', 'vertical') xlim = kwargs.pop('xlim', (-9e99, 9e99)) ylim = kwargs.pop('ylim', (-9e99, 9e99)) clim = kwargs.pop('clim', (np.min(self.z), np.max(self.z))) nl = kwargs.pop("nl", 11) if isinstance(self.dem, mtri.TriInterpolator): im = ax.tricontourf(self.tri, self.z, levels=np.linspace(*clim, nl)) ax.triplot(self.tri, '-', color='gray', alpha=0.5, lw=0.5) elif isinstance(self.dem, LinearNDInterpolator): im = ax.tripcolor(self.dem.points[:, 0], self.dem.points[:, 1], self.dem.tri) else: x = self.dem.grid[0] y = self.dem.grid[1] ix0 = np.argmin(x < xlim[0]) ix1 = np.argmax(x > xlim[1]) - 1 if ix1 < 0: ix1 = len(x) iy0 = np.argmin(y < ylim[0]) iy1 = np.argmax(y > ylim[1]) - 1 if iy1 < 0: iy1 = len(y) im = ax.pcolormesh(x[ix0:ix1], y[iy0:iy1], self.dem.values[ix0:ix1, iy0:iy1].T, cmap=cmap, **kwargs) im.set_clim(clim) cb = None if cbar: # norm = Normalize(vmin=clim[0], vmax=clim[1]) cb = pg.plt.colorbar(im, ax=ax, orientation=orientation) if clim: cb.vmin = clim[0] cb.vmax = clim[1] ax.set_aspect(1.0) return ax
if __name__ == '__main__': # if called directly as a script dgm = DEM('dgm5_borkum.asc') ax = dgm.show(vmin=0, vmax=10)